Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 21(10): 2441-2451, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28387464

RESUMO

Hydrogen sulphide (H2 S) serves as a vital gastric mucosal defence under acid condition. Non-steroidal anti-inflammatory drugs (NSAIDs) are among widely prescribed medications with effects of antipyresis, analgesia and anti-inflammation. However, their inappropriate use causes gastric lesions and endogenous H2 S deficiency. In this work, we reported the roles of a novel pH-controlled H2 S donor (JK-1) in NSAID-related gastric lesions. We found that JK-1 could release H2 S under mild acidic pH and increase solution pH value. Intragastrical administration of aspirin (ASP), one of NSAIDs, to mice elicited significant gastric lesions, evidenced by mucosal festering and bleeding. It also led to infiltration of inflammatory cells and resultant releases of IL-6 and TNF-α, as well as oxidative injury including myeloperoxidase (MPO) induction and GSH depletion. In addition, the ASP administration statistically inhibited H2 S generation in gastric mucosa, while up-regulated cyclooxygenase (COX)-2 and cystathionine gamma lyase (CSE) expression. Importantly, these adverse effects of ASP were prevented by the intragastrical pre-administration of JK-1. However, JK-1 alone did not markedly alter the property of mouse stomachs. Furthermore, in vitro cellular experiments showed the exposure of gastric mucosal epithelial (GES-1) cells to HClO, imitating MPO-driven oxidative injury, decreased cell viability, increased apoptotic rate and damaged mitochondrial membrane potential, which were reversed by pre-treatment with JK-1. In conclusion, JK-1 was proved to be an acid-sensitive H2 S donor and could attenuate ASP-related gastric lesions through reconstruction of endogenous gastric defence. This work indicates the possible treatment of adverse effects of NSAIDs with pH-controlled H2 S donors in the future.


Assuntos
Aspirina/toxicidade , Mucosa Gástrica/efeitos dos fármacos , Sulfeto de Hidrogênio/metabolismo , Organotiofosfonatos/farmacologia , Substâncias Protetoras/farmacologia , Animais , Anti-Inflamatórios não Esteroides/toxicidade , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Cistationina gama-Liase/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Humanos , Concentração de Íons de Hidrogênio , Interleucina-6/metabolismo , Masculino , Camundongos , Estrutura Molecular , Organotiofosfonatos/química , Organotiofosfonatos/metabolismo , Substâncias Protetoras/química , Substâncias Protetoras/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Cell Physiol Biochem ; 41(2): 742-754, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28214842

RESUMO

BACKGROUND/AIM: Accumulation of advanced glycation end products (AGEs) is a major cause of diabetes mellitus (DM) skin complications. Methylglyoxal (MGO), a reactive dicarbonyl compound, is a crucial intermediate of AGEs generation. N-acetyl-L-cysteine (NAC), an active ingredient of some medicines, can induce endogenous GSH and hydrogen sulfide generation, and set off a condensation reaction with MGO. However, there is rare evidence to show NAC can alleviate DM-induced skin injury through inhibition of AGEs generation or toxicity. The present study aimed to observe the effects of NAC on MGO-induced inflammatory injury and investigate the roles of AGEs and its receptor (RAGE) in NAC's dermal protection in human HaCaT keratinocytes. METHODS: The cells were exposed to MGO to simulate a high MGO status in diabetic blood or tissues. The content of AGEs in serum or cell medium was measured with ELISA. The protective effects of NAC against MGO-induce injury were evaluated by administration before MGO one hour, in virtue of cell viability, mitochondrial membrane potential, inflammation reaction, nuclear factor (NF)-κB activation, matrix metalloproteinase (MMP)-9 expression, as well as cellular behavioral function. RESULTS: We found the AGEs levels of patients with DM were elevated comparing with healthy volunteers. The in vitro AGEs generation was also able to be enhanced by the exposure of HaCaT cells to MGO, which reduced dose-dependently cellular viability, damaged mitochondrial function, triggered secretion of interleukin (IL)-6 and IL-8, activated NF-κB and upregulated MMP-9 expression. Furthermore, the exposure caused cellular adhesion and migration dysfunction, as well as collagen type I inhibition. Importantly, before the exposure to MGO, the preconditioning with NAC significantly attenuated MGO-induced AGEs generation, improved cellular viability and mitochondrial function, partially reversed the overexpression of proinflammatory factors and MMP-9, as well as the activation of NF-κB. Lastly, NAC blocked MGO-induced RAGE upregulation, and inhibition of RAGE with its neutralizing antibody significantly alleviated MGO-induced NF-κB activation, MMP-9 upregulation and inflammatory injury in HaCaT cells. CONCLUSION: The present work indicates the administration of NAC can prevent MGO-induced dermal inflammatory injury through inhibition of AGEs/RAGE signal, which may provide a basal support for the treatment of diabetic skin complications with NAC-containing medicines in the future.


Assuntos
Acetilcisteína/farmacologia , Produtos Finais de Glicação Avançada/análise , Substâncias Protetoras/farmacologia , Aldeído Pirúvico/farmacologia , Receptor para Produtos Finais de Glicação Avançada/análise , Regulação para Cima/efeitos dos fármacos , Idoso , Estudos de Casos e Controles , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Produtos Finais de Glicação Avançada/sangue , Humanos , Interleucina-6/análise , Interleucina-8/análise , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Receptor para Produtos Finais de Glicação Avançada/sangue
3.
Bioorg Med Chem Lett ; 26(6): 1585-1588, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26898812

RESUMO

Ammonium tetrathiomolybdate (TTM) was found to be a slow hydrogen sulfide (H2S) releasing agent. Its H2S generation capability in aqueous solutions was confirmed by UV-vis and fluorescence assays. TTM also showed H2S-like cytoprotective effects in hydrogen peroxide (H2O2)-induced oxidative damage in HaCaT cells.


Assuntos
Sulfeto de Hidrogênio/química , Molibdênio/química , Água/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Peróxido de Hidrogênio/farmacologia , Estrutura Molecular , Molibdênio/farmacologia , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Solubilidade/efeitos dos fármacos , Relação Estrutura-Atividade
4.
Neurochem Int ; 92: 49-57, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26707812

RESUMO

A meta-analysis has suggested that vitamin D deficiency is involved in diabetic peripheral neuropathy (DPN) and the levels of hydrogen sulfide (H2S) are also decreased in type 2 diabetes. The injection of vitamin D induces cystathionine-ß-synthase (CBS) expression and H2S generation. However, it remains unclear whether the supplementation of vitamin D prevents DPN through improvement of CBS/H2S expression. In the present study, RSC96 cells, a rat Schwann cell line, were exposed to high glucose and methylglyoxal (HG&MG) to simulate diabetic peripheral nerve injury in vivo. Before the exposure to HG&MG, the cells were preconditioned with calcitriol (CCT), an active form of vitamin D, and then CCT-mediated neuroprotection was investigated in respect of cellular viability, superoxide anion (O2(-)) generation, inducible nitric oxide (NO) synthase (iNOS)/NO expression, mitochondrial membrane potential (MMP), as well as CBS expression and activity. It was found that both high glucose and MGO decreased cell viability and co-treatment with the two induced a more serious injury in RSC96 cells. Therefore, the exposure to HG&MG was used in the present study. The exposure to HG&MG markedly induced iNOS expression, NO and O2(-) generation, as well as MMP loss. In addition, the exposure to HG&MG depressed CBS expression and activity in RSC96 cells. However, the preconditioning with CCT significantly antagonized HG&MG-induced cell injury including the decreased viability, iNOS overexpression, NO and O2(-) accumulation, as well as MMP loss. CCT also partially restored the decreased CBS expression and activity triggered by HG&MG, while the inhibition of CBS with hydroxylamine attenuated CCT-mediated neuroprotection. Moreover, the exogenous donation of H2S produced similar cellular protective effects to CCT. The data indicate that the supplementation of vitamin D prevents HG&MG-induced peripheral nerve injury involving the restoration of endogenous H2S system, which may provide a basal support for the treatment of DPN with vitamin D clinically.


Assuntos
Calcitriol/farmacologia , Cistationina beta-Sintase/biossíntese , Glucose/toxicidade , Sulfeto de Hidrogênio/metabolismo , Fármacos Neuroprotetores/farmacologia , Aldeído Pirúvico/toxicidade , Células de Schwann/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Ácido Peroxinitroso/metabolismo , Ratos , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...